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Abstract: NIH is a worldwide leader in supporting fundamental biomedical 
research, which lays the foundation for disease diagnosis, treatment and 
prevention.  Evaluating this support requires analysis of diverse investments 
covering the spectrum of biomedical research, to assess balance, trends, 
outcomes, and relationships to other agencies.  In this poster, we show the use of 
NIH Maps, an online text-mining tool, to analyze research portfolios in NIGMS, a 
$2.4 billion institute whose mission is devoted to supporting a diverse range of basic 
research from basic cell biology to pharmacology.  The tool was used for discovery 
and classification of NIGMS research based on grant information including scientific 
titles and abstracts.  We show how this information is complementary to the NIH 
disease-based research classification (the RCDC system), and how it has provided 
a comprehensive approach for understanding portfolios, and their changes over 
time, independent of administrative research programs. This process included 
expert validation of the automated categories, as well as consideration of the 
strengths and weaknesses of the approach and the implications for future text 
mining efforts. 

Topic modeling refers to a strategy that identifies informative words in a set of 
documents and analyzes their co-occurrence to arrive at “topics” or categories that 
are independent of keywords.  Certain groups of words co-occur frequently and are 
defined as topics; the number of words in each topic and the number of topics set the 
granularity of the analysis.  Note that a particular word can be represented in multiple 
topics (e.g., microtubules in cell division, cilia or intracellular transport).  The topic 
modeling strategy extracts groups of words from a set of documents and uses 
Bayesian statistical techniques to infer the underlying distribution of topics.  The most 
relevant topics for a particular document are calculated by the occurrence of the 
words within each topic and each document can be represented by several topics.  
Thus, one grant can be represented in several topics categories; each of these is 
weighted proportionally to represent the fraction of the project devoted to that topic.  
The dollars that are associated with each of the subtopics within a grant are weighted 
as well, thereby giving a more accurate distribution of the dollars than would result 
from counting the entire grant as contributing to only one topic.
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Example of Topic Modeling by Latent Drichlet Allocation*

1. I like to eat broccoli and bananas.
2. I ate a banana and spinach smoothie for breakfast.
3. Chinchillas and kittens are cute.
4. My sister adopted a kitten yesterday.
5. Look at this cute hamster munching on a piece of broccoli.

Sentences 1 and 2: 100% Topic A
Sentences 3 and 4: 100% Topic B
Sentence 5: 60% Topic A, 40% Topic B

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, … (at which point, 
you could interpret topic A to be about food)
Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, … (at which point, you 
could interpret topic B to be about cute animals)

2 Allotting grant dollars to topics

2R01GM026875-35 Biochemical Studies of Mitosis
Highly integrative cellular processes-those involving many components with interactions

The data presented in the NIH Maps analysis exclude what are considered to be 
specialized or resource projects, namely pre- and post-doctoral training grants, the 
IDeA awards transferred from NCRR at the start of FY12, and projects supported 
through the former Minority Opportunities in Research Division. Topics that were 
judged to be outside the scientific content of research grants were excluded.

3 Validation and Clustering Topics into Scientific 
Categories
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While the topic modeling process provides valuable granularity by using over 700 
topics to describe NIH research, there was a need for broader categories to carry out 
higher level analyses. For NIGMS, ~300 topics were found to account for 90% of 
NIGMS research spending; these ‘GM topics’ and  the total costs of each award 
were assigned as a percentage to the top three topics in each project. The dollars 
associated with each topic were weighted accordingly.  These topics were then 
clustered using an algorithm based on co-occurrence, which resulted in 124 
categories. These categories were further reduced to 50 based on review by NIGMS 
staff.

NIGMS Spending in Major Categories as a 
Percentage of NIH-wide Spending
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Figure 4 shows the clusters accounting for top 90% of the NIGMS investment listed 
in descending order by NIGMS dollars.   ’Structural biology’ is at the top of the list, 
with a total cost investment by NIGMS of $149.5 million as seen in blue on the right.  
Other significant investments are ‘networks, genomics, bioinformatics’, ‘molecular 
recognition’, and ‘metabolic, metallo & natural products enzymology’.  
This tabulation also shows what percentage of the NIH total investment for each 
topic is funded with NIGMS dollars (red bars in Figure III).  For ’structural biology’, 
the NIGMS investment represents 71% of the NIH total.  Other scientific areas 
where NIGMS has made significant investments are:  ‘organic chemistry & natural 
product synthesis’ at 62%, ‘cell cycle & cell division’ at 62%, ‘translation’ at 55%, 
and ‘microtubule dynamics & processes’ at 56%.

Distribution of Categories Across NIGMS 
Scientific Divisions
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Figure 5 shows the same list of top NIGMS investments, but as they are 
represented in each division. B: Biomedical Technology, Bioinformatics, and 
Computational Biology C: Cell Biology and Biophysics G: Genetics and 
Developmental Biology P: Pharmacology, Physiology and Biological Chemistry. One 
can see that 72% of ‘structural biology’ is funded by CBB, but that the other 28% is 
spread across the other divisions.  This was not at all apparent from looking at the 
program areas and PCC codes alone.  From the traditional description, one may 
have concluded that NIGMS invested only $70 - 80 million in structural biology, 
mostly through programs in CBB. For other topics such as posttranslational 
modifications, the investment is spread somewhat evenly across three out of four 
divisions.
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B C G P
structural biology 15.32% 72.58% 5.12% 6.99%
crystall ization, crystals, x_ray_crystal lography, protein, structure_determination, structural, m 17.20% 81.81% 0.05% 0.94%
structural , complexes, biochemical, molecular, structure, x_ray_crystallography, proteins, dom 6.01% 69.28% 11.95% 12.77%
computational, simulations, molecular_dynamics, protein, structures, molecular, structural, m 19.70% 69.20% 2.49% 8.61%
nuclear_magnetic_resonance, spin, structure, nmr_spectroscopy, labeled, _15n, _13c, solution, 0.00% 90.05% 1.80% 8.15%
shape, structure, size, organization, _3d, architecture, assembly, shaped, arrangement, organize 18.50% 56.51% 22.50% 2.48%
nuclear_magnetic_resonance, spectrometer, instrument, mhz, electron_paramagnetic_resonanc 82.28% 17.22% 0.00% 0.50%
spectroscopy, raman_spectroscopy, spectral , sers, optical, infrared, scattering, laser, vibration 56.52% 34.91% 0.00% 8.57%

Topics within a Category Across NIGMS 
Scientific Divisions

Figure 6 shows more detailed information on the differences among the divisions 
within the structural biology category. For example, Biomedical Technology, 
Bioinformatics, and Computational Biology (B) division focuses on NMR 
instrumentation, while projects that use NMR to determine protein structure are 
concentrated in the Cell Biology and Biophysics division (C). 

Clusters with >59% invested in either Projects in years 1-10 or Projects in years >10 
are highlighted

Detecting Emerging Topics and Clusters with NIH 
Maps Data
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In Figure 7 we looked to see if newer projects might be indicative of scientific 
categories that are growing/emerging. Projects are grouped into “newer” or “older” 
categories based on the project year date of <10 years. Categories with a significant 
history of NIGMS investment such as enzymology, DNA metabolism, transcription, 
and translation have a greater number of established projects relative to other 
categories such as networks, genomics, and informatics, population genetics, and 
microbiology. A higher percentage of newer projects within a category may also 
reflect investments from targeted RFAs and/or PARs. Within categories particular 
topics show a higher percentage of newer grants, which appears to reflect the current 
state of the field. For example, newer projects emphasize topics on non-coding RNAs 
and microRNAs in post-transcriptional processing, while there is an emphasis on 
induced pluripotent stem cells and differentiation for newer grants in the stem cell 
field. 

Conclusions:
• NIH Maps is based on a quantitative approach and is viewer 

independent, transparent, adjustable, and reproducible. 
• NIH Maps topics generally represented the scientific content of 

NIGMS research grants quite well.
• NIH Maps NIH Maps data provides the ability to proportionally allot 

dollars, which is a major advantage over other analysis tools.
• <700 topics provides appropriate granularity
• Determining how to combine topics into a reasonable number of 

scientific categories relevant to the IC for reporting purposes 
requires significant input from subject matter experts
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